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We present a linearly stable model in two complex dimensions that can be triggered by an
initial perturbation or external noise to exhibit chaotic dynamics although all linear perturbations
are damped. The transition to chaos is caused by an interplay between transient linear growth and
nonlinear, energy conserving mixing. The linear growth mechanism is due to the non-normality of the
linearized dynamics in the vicinity of the stationary point. We consider this combined mechanism of
non-normal growth and nonlinear mixing as a model for a new but often realized transition scenario

from laminar flow to turbulence.

PACS number(s): 47.27.Cn, 47.20.—k, 03.40.Gc

I. INTRODUCTION

Linear stability can coexist with complicated dynamic
behavior. ‘This seems obvious since outside the basin
of attraction of a stable fixed point the structure of the
phase space may be rather intricate. Less obvious is the
fact that the basin of attraction can be much smaller than
the range of validity of the linearizable dynamics. This
can happen if trajectories starting in the linear vicinity
of the fixed point can transiently leave the linearizable
range although all eigenvalues have a negative real part.
If the nonlinear terms are then taken into account in addi-
tion, these trajectories can even escape the vicinity of the
fixed point completely. Recent papers [1-5] suggest that
such a scenario of linear transient growth combined with
proper nonlinear mixing may take place in linearly stable
shear flows which nevertheless become turbulent. It may
also be relevant in other cases with asymptotically stable
dynamics, e.g., in Ginzburg-Landau-type equations.

Mathematically the transient linear growth is a charac-
teristic feature if the linearized dynamics is non-normal,
i.e., if it does not commute with its Hermitian conju-
gate. While the importance of non-normality as a tran-
sient linear growth mechanism has recently already been
discussed by various authors [1-5], here we emphasize
the complementary action of the nonlinear mode mixing.
Although the nonlinearity does not feed energy into the
system, it can prevent the dissipative decay reflected by
the negative real parts of the eigenvalues by redistribut-
ing the available energy to those modes which are able to
gain energy transiently. We shall show that the proper
combination of transient growth and nonlinear mixing is
able to permanently balance the energy loss and the en-
ergy gain on a finite level, even if the initial disturbance
is orders of magnitudes smaller. The level of this balance
is, of course, in the range of influence of the nonlinear-
ities and therefore the time evolution can be chaotic or
turbulent.

II. MODEL

We present a simple system of ordinary differential
equations (ODE’s) that will follow the outlined route.
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Our notation is oriented on hydrodynamical terminol-
ogy although we do not model a particular flow prob-
lem. Clearly we need at least two real variables to en-
able non-normality. Such a two-variable model has been
considered including nonlinear mixing already in [4]. At
least three (real) variables are necessary to allow chaotic
motion in an autonomous system. Since the nonlinear
dynamics shall be conservative, we chose to take four
real or equivalently two complex variables u; and wua,
each representing the amplitude and the phase of some
flow pattern. These flow patterns are imagined to be
eigenmodes of a fluid flow in the absence of some back-
ground shear flow (typically denoted as Stokes modes).
The whole flow consists of a supposedly stable laminar
shear flow U, plus some deviation du. This latter one
is thought to be expanded in terms of the Stokes mode
patterns. Thus u(t) := [u1(t); u2(t)] has the meaning of
the amplitude vector of a deviation du of the flow field
from a linearly stable shear profile Uy.
Our model equation for u(t) is

u(t) = (4; + RAz)u + B(u,u) + RC(o||u|)u. (1)

Let us specify this equation term by term. First of all,
Aju describes the linear decay of the eigenmodes in the
absence of the laminar background flow. The decay rates
are determined in real flow by the geometry of the bound-
aries and the viscosity of the fluid. They define a typical
viscous time scale. Another time scale which is dynami-
cal is given as the ratio of a typical length of the system
to the typical velocity of the laminar flow field. We have
chosen to nondimensionalize the velocity by the viscous
time scale. Then the dynamical time scale is just the
inverse Reynolds number R™1, i.e., R measures the ve-
locity of the basic low ~ Uy in terms of the viscous veloc-
ity. This is close to the experimental situation where the
boundaries and the viscosity are kept fixed, but the mean
velocity of the fluid and thus R is varied. One must keep
in mind, however, that in this gauge a fixed nondimen-
sional time corresponds to more and more “revolutions”
of the flow field if one increases the velocity of the fluid
and thus the Reynolds number. To model all this we take
A; to be a diagonal matrix with entries —18 and —38, in-
dependent of the Reynolds number R, which mimics the
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decay rates of the two eigenmodes. These decay rates
reflect the result of the Laplacian in the Navier-Stokes
equation, which means that they are of the order of a
few —n? for the least stable eigenmodes. The additional
linear term R Aju describes the influence of the laminar
shear flow background U, on du. We decompose

Az 1= yAzc + A2y

0.8 0 0 0.7
where Azc::( 0 I.Ii) , A2n5=(0 0 ),

(2)

again in close resemblance to actual flow field matrix el-
ements. A, reflects the convective effect of the back-
ground flow on the eigenmodes and is therefore purely
imaginary. It originates from the term (Up - V)éu in the
linearized Navier-Stokes equation. This convection effect
depends on the orientation of the eigenmodes relative to
the shear profile. It vanishes (v = 0) for modes that do
not vary in streamwise direction. The choice v = 1 or
v = 0 will enable us to investigate the influence of the
convection on the behavior of the flow. The term A,,
corresponds to (du-V)Uy in the linearized Navier-Stokes
equation. It is responsible for the non-normality of the
system and allows the transfer of energy from the back-
ground flow Uy into the perturbation du. The specific
numbers for the matrix elements are chosen to mimic the
gradient, i.e., a factor of m, the mean shear velocity, i.e.,
a factor of R/2, and the orthogonal projection.

Next, the term B(u,u) in the evolution equation (1)
models the nonlinear interaction (du- V)du between dif-
ferent perturbations. In accordance with the Navier-
Stokes equation we demand it to be conservative and
quadratic in u. Conservative means that it will not
change the total “energy” u*- u of the perturbation,
but just redistributes it among the different modes. The
latter requirement deserves a comment. In highly sym-
metric geometries, where the eigenmodes are, e.g., plane
waves, the eigenspaces can be classified by the conserved
components of their wave vectors. Eigenspaces with dif-
ferent wave vectors are orthogonal of course. Thus the
non-normality of the linearized Navier-Stokes dynamics
can act only within each such subspace. Since the Navier-
Stokes nonlinearity (u - V)u does not couple directly,
eigenmodes within the same subspace due to momentum
conservation, non-normality, and second-order nonlinear
interaction do not combine. In generic geometries there
will, however, be no such selection rules and the linear
modes will interact directly, giving rise to a quadratic
term in the evolution equation. We shall regard such a
situation and take B =: (B, B;) of the form

Bl(u, u) = bl’ll.l’ll.z —+ b2u1u§ —+ bgu;uz =+ b4u’1‘u’2’
—b;ug — (b; + bs)Uzu; — bsu;2 y

(3)
B;(u,u) = bsujuz + beujus + brujuj + bgujuj
—b;u% - (b: + bz)ul’l.l,; — b4’U.IZ .

The parameters by,bs,...,bg reflect the different wave

numbers of the modes and some geometrical prefac-
tors. The ansatz (3) conserves energy for any choice
of by,...,bg. We will use the set by = 0.2, by = 0.41,
b3 = 06, b4 = 087., b5 = 1.0, bs = 121,, b7 = 14,
and bg = 1.6¢. These b values are in a range of the
high-dimensional parameter space where the dynamics
exhibits chaotic attractors, depending, of course, on R.
There are other parameter ranges (not even far away)
which lead to limit cycle solutions. Since we want to
mimic the transition to turbulence in a driven flow field,
we prefer the choice of the system parameters that leads
to a chaotic behavior. But the underlying dynamical
mechanism, namely, the interplay between non-normality
and nonlinear interaction in a linearly stable system, is
also vivid in parameter ranges where our model asymp-
totically leads to a limit cycle.

We have not yet accounted for some property of the
Navier-Stokes equation. The energy of the perturbations
may increase temporarily, but nevertheless it remains
globally bounded. (For a rigorous prove of this state-
ment in the case of plane Couette flow see [6].) We now
argue the following: If the perturbations grow, they will
tend to flatten the original shear profile Uy and thus in-
hibit further growth of the perturbation energy. Such a
mechanism has not yet been implemented by the A and
B terms on the right-hand side of (1). Indeed, depending
on the Reynolds number R, the actual choice of the b;,
and the initial conditions, the energy happens to grow
infinitely in the numerical solutions. To inhibit that we
added the third term

o|lul|

C(allul]) := T oful] Azn, (4)

which in effect implements this feedback mechanism by
switching off the non-normality when ||lu|| = (uiu] +
uu})'/? becomes large. o is a real parameter that deter-
mines the size of ||u|| for which the feedback will become
significant. We take o := 10/R; then further growth will
be squeezed if ||u|| reaches a size which is somewhat less
than the order of ||Up|| ~ R, reflecting the fact that the
fluctuations in turbulent fluids are typically somewhat
smaller in magnitude than the background flow. This
completes the definition of our dynamical model.

III. NON-NORMALITY

Let us consider first the linear properties of the model.
Obviously the eigenvalues of A := A; + R Az are A; :=
—18 + 0.89Ri and A; := —38 + 1.14Ri:. In particu-
lar the real parts of A; and A, are independent of the
Reynolds number. The first eigenvector v, = [1;0] is
also independent of R, but the second one (not normal-
ized) varies, vo = [-7TR /(200 —3yR i); 1]. For nonzero R
the two eigenvectors are no longer orthogonal, indicating
non-normality of A. This deviation from being orthogo-
nal can be measured by a = |v] xv2|/(]|v1]| ||Vz|]), which
is shown in Fig. 1. A second effect of non-normality is
the sensitivity to perturbations. This can be quantified
by the € pseudospectrum. The € pseudospectrum of the
matrix A is defined as the set in the complex A plane
P(e) := {A| 1/(JI(A — X)~Y|2 < €}. For each A € P(e)
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FIG. 1. Area a spanned by the normalized eigenvectors of
A as a function of the Reynolds number R. The dashed curve
decreases asymptotically ~ 1/R.

there is a perturbation Ayer such that A is an eigenvalue
of A + Apert. The € pseudospectrum of a non-normal
system covers a substantially larger area in the com-
plex frequency plane around the eigenvalues than that
of a normal system. This means that in non-normal sys-
tems small perturbations can result in large modifications
of the spectrum. We asked for the smallest norm €p;,
of all perturbations Apert that will shift the first eigen-
value A; of A from —18 + 0.8yR i to 0.8yR i, i.e., such
that A 4+ Apert becomes marginally stable. This €, de-
pends of course on R. It is given by ¢(R,0.8yR i), where
€(R,A) := 1/[||(A(R) — A)"1||2)- For normal operators
A, €min would be exactly the distance of A to the nearest
eigenvalue, which would result in 18 in our model. €, is
shown in Fig. 2. The pseudospectrum is relevant also in a
related context, namely, in resonant amplification of ex-
ternal noise. The response amplitude of a linear system
excited externally with a frequency w is determined by
the norm of the resolvent e 7}(R, iw) = ||(A(R)—iw)~Y||2.
Hence a large pseudospectrum also implicates resonant
amplification of external excitation with frequencies that
are far away from the eigenfrequencies of the system
(“pseudoresonance”). As visible in both Figs. 1 and 2,
there are remarkable differences between the convective
case v = 1 and the nonconvective case v = 0. For y =1
the effects of non-normality saturate at Reynolds num-
bers of a few hundred when R A, dominates A;. Then
both the diagonal and the nondiagonal elements of A
scale with R, so that their ratio, which is responsible for
the degree of non-normality, saturates. As an elemen-
tary calculation shows, the level of saturation depends

0 250 R 500

FIG. 2. €min as a function of the Reynolds number R.
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on the difference of the diagonal elements of yA3., more
general on the eigenvalue difference. In terms of the hy-
drodynamical point of view this can be understood by the
following argument. If the streamwise velocity of the two
localized mode patterns are different (which may be due
to the different location of their amplitude maximums rel-
ative to the background profile), then the time in which
their amplitudes do overlap will shrink with increasing
‘R. This limits the non-normality.

This effect can indeed be observed in the behavior of
hydrodynamical systems. In plane Couette flow there are
pseudoresonances €~ !(R, iw) that grow like O(R) [4], but
only for small w. We expect the modes which give rise
to this growth to have large wavelengths in streamwise
direction and thus no significant drift. For large w there
is no such growth of e!(R,iw) with R, indicating the
absence of modes with a common drift velocity corre-
sponding to that large w. In Ref. [7] the influence of
white noise on plane Poiseuille flow is reported. Here too
one can observe that the effect of non-normal amplifica-
tion is most enhanced for modes with large wavelengths
in streamwise direction.

In actual flow fields more and more modes get involved
in the dynamics if the Reynolds number is increased. We
consider this as the reason for the fast (exponential) de-
crease of the volume spanned by the linear eigenvectors of
pipe flow perturbations, observed in Ref. [1]. Of course,
our model cannot reproduce this feature.

Non-normal linear systems allow transient energy am-
plification even if their spectrum would suggest pure
damping. The time evolution of the energy is deter-
mined by A! + A (in our notation). A' 4+ A is Hermi-
tian and has a positive eigenvalue for R > 74.72 for
both choices of v in Az, thus allowing transient energy
growth. The mechanism for this transient energy ampli-
fication is the different time evolution of different eigen-
modes. Consider a perturbation that is almost perpen-
dicular to all eigenmodes. This has to be represented by
a superposition of eigenvectors with rather large ampli-
tudes that balance to a moderate sum, namely, the size
of the disturbance. If this balance of the superposition
is destroyed in the course of time due to the different
corresponding eigenvalues, the perturbation energy will
grow transiently even if each individual eigenmode con-
tribution decreases. Hence one might expect that the
transient energy growth is more enhanced for the con-
vective case vy = 1 than for the nonconvective v = 0 case,
because in the former case the decorrelation takes place
more rapidly. This effect is, however, superseded by the
counterbalancing tendency of the degeneration of eigen-
modes which does not saturate with increasing R in the
latter case. As a result, the maximum energy amplifica-
tion factor a is always larger for v = 0 than for v = 1
as we have outlined in Fig. 3. The maximum energy is
reached either at the dynamical time scale (for v = 1)
or at the viscous time scale (for v = 0). Figures 3(c)
and 3(d) show two typical evolutions of the perturba-
tion energy together with ||e4'te4t||,, which constitutes
an upper bound on the normalized perturbation energy

[u*(t) - u(t)]/[u*(t = 0) - u(t = 0)]. The oscillations re-
semble some kind of Poincaré recurrence property and
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would disappear if one would allow more degrees of free-
dom.

Transient amplification requires Reynolds numbers
above a certain threshold. This can be defined by that
Ro above which a > 1. In our model that happens at
Ro = 74.72. But even if one is beyond threshold R > R,
whether amplification occurs depends on the kind of per-
turbation. Clearly, initial disturbances in the direction

10 000 T T

100 |

0.01 ¢

®) slope (-1)

0.001 : -
100 1000 R

©)

FIG. 3. (a) Maximum energy amplification factor «.
(b) Time T to reach maximum of energy. (c) En-
ergy bound E; = HeAt'eA'Hz (solid line) and energy
E: = |[u(t)||® (dashed line) of the system @ = Au starting
with u(t = 0) = [1;1]/+/2. yis 1.  (d) Same as (c), but for
v =0.
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of the A eigenvectors always immediately decay. But
initial disturbances whose direction is nearly orthogonal
to the A eigenvectors enjoy transient enhancement. The
amplification is all the better the more the disturbance
“misfits” the eigendirections. These misfit disturbances
are thus the ones that can draw energy from the basic
laminar flow, which is responsible for the non-normality
and thus enables the misfit.

IV. NONLINEAR MIXING

Now we include the nonlinear parts of Eq. (1). With-
out the nonlinear terms any perturbation will eventually
fade away, even if there is transient amplification. This
follows from the negative real parts of the A eigenvalues.
Any disturbance is rotated eventually in the A eigendi-
rection and then decays. The role of the nonlinearity
is to reestablish misfitted components again by the in-
teractions among the modes that constitute the ampli-
fied initial disturbance. Parts of the available energy are
thus used to produce again a misfit disturbance that can
draw energy once more; the other part of the energy is
dissipated immediately. This energy redistribution hap-
pens permanently, so permanently misfitted amplitudes
are present and permanently energy is drawn from the
basic flow via non-normality, permanently balancing the
dissipative loss. Since the interaction B depends on
the details of the energy distribution over the u com-
ponents, this redistribution process is quite complicated
and chaotic, but self-sustaining.

The attractor of the nonlinear temporal evolution de-
pends on the actual choice of the parameters in B and
on the initial conditions. It may be a fixed point, a limit
cycle, quasiperiodic or chaotic. In our model (1) the at-
tractor numerically [8] turns out to be more irregular for
v = 1 than for v = 0 since the advective case v = 1
brings in two more frequencies. Nevertheless, there are
common qualitative features of the model that are in-
dependent of the specific choice of the B parameters.
We describe these generic features now. If the Reynolds
number is too small, each initial perturbation will die
out (“relaminarize”). As mentioned above, the thresh-
old value for energy amplification is R = 74.72. The
actual transition to turbulent behavior due to the self-
sustaining feedback mechanism occurs if R is about an
order of magnitude larger than R, and depends on the
initial disturbance. The onset of turbulence happens at
generally lower R for v = 0 than for v = 1. We demon-
strate this in Fig. 4. Even if the Reynolds number is large
enough, the system will return to the fixed point u = 0
if the initial amplitude is too small because the nonlinear
feedback (which is quadratic in u) is not strong enough
to compensate the asymptotic exponential decay of the
linear system. Since both the energy amplification factor
and the corresponding time scale are larger without ad-
vection (y = 0) than with advection (y = 1), the initial
amplitude, which is sufficient to produce “turbulence,” is
much smaller in the former case; cf. Fig. 5.

In order to investigate this turbulence transition in
detail we calculated the temporal evolution for differ-
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FIG. 4. (a) Perturbation amplitude ||[u(¢)|| for the model
equation (1) and different Reynolds numbers. The initial vec-
tor is u(0) = [0; 1000]; advection is included.  (b) Same asin
(a), but without advection. The initial vector is u(0) = [0;1]
here and the Reynolds numbers are lower than in (a).

ent Reynolds numbers and various initial amplitudes.
In Fig. 6 we plotted the resulting amplitude [|u(t)|| at
t = 0.5 as a function of both R and ||u(0)||. For each
value [|u(0)|| of the initial amplitude we averaged over
a randomly chosen ensemble of ten different realizations
u(0). As can be seen in the diagram, the threshold ini-
tial amplitude ||u(0)||thr, Which is necessary to escape
the laminar fixed point and to establish the turbulent
state, shrinks with increasing Reynolds numbers if we
take v = 0 (nonadvective case), while it remains con-
stant or even increases if we take advection into account,
v = 1. The reason for this behavior is, of course, that the
non-normality increases with increasing Reynolds num-
ber for the nonadvective case whereas it asymptotically
remains constant for v = 1.

The energy E = ||u||?/2 satisfies the balance equation

dE(t)

dt = [u‘Alu + Ru” (A2 + C)u]real part * (5)

The nonlinearity B(u,u) does not contribute. The first
term on the right-hand side describes the dissipation, the
second one the input rate. Figure 7 shows the temporal
behavior of these contributions to the energy balance.
While the dissipation rate D = —18|u;|? — 38|uz|? is in
phase with and roughly proportional to the energy itself,
the non-normal term fluctuates strongly:

Ein = (u]uz + ujth)eal part 0-7TR/(1+0l[ul))  (6)

originates from the interaction of the disturbance with
the laminar background flow. It can be both, positive
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or negative, i.e., energy feeding or drawing. In the time
average (Ein) is positive and precisely balances (D).

If advection is allowed, the degree of non-normality
saturates, o||u|| = O(1), i.e., ||u]] x R. Then (ujus +
udu;)/||u||? is of the order 1/R. Without advection,
there is no saturation of the non-normality, i.e., o||ul|
exceeds 1. Then (uluz + uju;)/||u||? is of the order of 1
and thus ||u|| < R”.

10 000 T T T
/u(O) = (0+0i; 300+0i)

lhall |

100

1000

hall

10

0.1

0.001

Re(u,)
1000

Re(u,) ' ' ' '
200

100

0 0.2
FIG. 5. (a) Perturbation amplitude |ju(t)|| for the model
equation (1) and different initial vectors u(0)
= [0 + 0i;100 + 0], [0 + 04;200 + 0i], and [0 + 0i; 300 + 0i].
The Reynolds number is R = 2000 for the advective case.
(b) Same as in (a), but for the nonadvective case. The ini-
tial vectors are u(0) = [0 + 0i;0.2 + 0¢], [0 + 04;0.4 + 03],
and [0 + 0%;0.8 + 0] and the Reynolds number is R = 1000.
(c) Real part of u; for the initial vector u(0) = [0+0%; 300+04]
of (a). (d) Real part of ug for the initial vector
u(0) = [0 + 0¢; 0.8 + 0¢] of (b).

04 t
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2000
Hu(t=0.91

10 000
lha(t=0.911

FIG. 6. (a) Perturbation amplitude at fixed time ¢t = 0.5
as a function of the Reynolds number R and the initial am-
plitude ||u(0)|; vy =1. (b) Same as in (a), but for v = 0.
The threshold of turbulence transition decreases roughly like
[[u(0){]c ~ 1/R for large R. On the bottom plane the isolines
of ||u(t = 0.5)|| =const are displayed.

5x10°

FIG. 7. Energy input Ein and dissipation D as a function
of time. For comparison with the temporal evolution of the to-
tal energy E = ||u||?/2 we also plotted a constant multiple of
E, namely, 28||u||?>. The prefactor 28 was chosen as the mean
of the dissipation rates 18 and 38 to get a magnitude compa-
rable to the dissipation D. We took the parameter v and the
initial value u(0) as in Figs. 4(a) and 4(b), respectively. The
Reynolds numbers are (a) R= 2000 and (b) R= 1000.

We also investigated the influence of noise on the tur-
bulence transition by adding to the variables after each
time step of the integration routine a Gaussian ran-
dom value with zero mean, variance s2, and J correlated
in time. If that noise was strong enough it caused a
transition away from the vicinity of the laminar state
u(t = 0) = 0. For the nonadvective case v = 0 the
noise level, which was necessary to induce turbulence,
was rather low (s ~ 2 x 107%) and did not change quali-
tatively the dynamics on the chaotic attractor. This was
different for the advective case v = 1, which needs a
much larger s. We therefore focused our attention to the
effect of noise on the nonadvective model, i.e., y = 0. As
expected, the two-component u, was much more suscep-
tible to external noise than the one-component u;, since
with increasing R the second eigenvector becomes more
and more parallel to the 1-direction and perpendicular
to the 2-direction, so that disturbances in the 2-direction
(represented by uz) are misfit and grow transiently in the
linearized system and can draw energy from the laminar
background, respectively. As in the deterministic system
the Reynolds number must be large enough to escape
the laminar fixed point u = 0 and to pass over to turbu-
lence. Substituting the size of the initial perturbations
|[u(0)|| of the deterministic system in Fig. 6 by the noise
strength, we obtained a picture that was rather similar
(Fig. 8).

Another feature that is independent of the detailed
choice of the parameters is the asymptotic scaling of
the turbulence energy. For large Reynolds numbers
(R 2 8000) the model (1) tends to be no longer chaotic,
but to preferably exhibit limit cycles. This behavior is
similar to that of the Lorenz system, which shows the
same tendency if one chooses very large values for the
driving parameter r. Again, in the asymptotic range of
large Reynolds numbers R our model shows remarkable
differences between v = 1 and v = 0. For the advec-
tive motion v = 1 one has approximately ||u|| ~ R in
the high-R regime and for v = 0 one has |[|u|| ~ R? (cf.
Fig. 9). This finding can be used for an estimate of the

10 000
lha(t=0.5)1l

;,s“*;i; l”
A‘tl\w’xm\“ﬂ
m——

0 9

FIG. 8. Same as in Fig. 6(b), but driven by external noise.
The initial vector is ||u(0)|| = 0. Here we used the standard
fourth-order Runge-Kutta algorithm with constant time step
size 5x 107 %, After each time step we added to each u compo-
nent a random variable with Gaussian distribution and zero
mean. The standard deviation s of this random variable was
varied to model different noise levels. Its maximum value is
about 5 x 10™* in this figure.
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FIG. 9. Time averaged amplitude [|u][ (¢) and its standard
deviation (+) in the high-R regime. Each run is started with
u(0) = (0 + 0¢;10* + 0i), averaging begins at ¢ = 0.1, and
the averaging interval is At = 0.4. As mentioned in the
text, the attractor becomes a limit cycle for R 2 8000, which
shows up in a reduction of the standard deviation of ||u]| in
comparison to that in the chaotic regime. The transition from
a chaotic to a limit cycle attractor happens for smaller R in
the nonadvective case v = 0.

different terms of the right-hand side of (1). In the ad-
vective dynamics v = 1 one has R(4; + C)||u|| ~ R?
and also B ~ R2. Hence for large R the dynamics is
controlled by an interplay of both contributions. In the
nonadvective case v = 0 one has R(4; 4+ C)u ~ R?, but
B ~ R*. Therefore the dynamics is essentially domi-
nated by the nonlinear term.

V. SUMMARY

To sum up, our simple model qualitatively meets many
features that can be observed in the turbulence transi-

tion of various flows that show no (or only very high
R) linear instability. The range of Reynolds numbers
that is relevant for the transition is even quantitatively
correct. The model suggests that the modes with large
wavelengths in streamwise direction (corresponding to
the nonadvective modes v = 0) play a key role in this
context since their capacity for energy amplification is
most enhanced. But also modes with shorter wavelengths
can contribute to the dynamics when they are excited be-
yond a certain threshold. In hydrodynamic flow the large
wavelength modes might well act via the nonlinear inter-
actions as such an above threshold perturbation on the
short-wavelength modes. So the actual dynamics of tur-
bulence without linear instability takes place in a very
high dimensional phase space.

This new route to chaos and its dependence on the
system parameters, which in our model are the Reynolds
number R and the missing or relevant difference of the
imaginary parts of the eigenvalues (y = 0 or v = 1,
respectively), may be important in many other situations
too, namely, whenever linear stability coincides with non-
normality of the linear dynamics together with proper
remixing by the nonlinear interactions.

Note added in proof. After submitting our paper we be-
came aware of a manuscript by F. Waleffe (unpublished).
This author also considers a model with four real vari-
ables, which has many features similar to our model (1),
but with a different meaning of the four variables. Those
are intended to describe the structure of the flow field,
which is supposed to be responsible for the amplifica-
tion of the disturbances. There also a switch-off for the
mean shear, which is an important part of our model, is
included (by a separate equation of motion).
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FIG. 5. (a) Perturbation amplitude |[u(t)|| for the model
equation (1) and different initial vectors u(0)
= [0 + 04;100 + 0d], [0 + 04; 200 + 0i], and [0 + 0i; 300 + 0i].
The Reynolds number is R = 2000 for the advective case.
(b) Same as in (a), but for the nonadvective case. The ini-
tial vectors are u(0) = [0 + 0¢;0.2 + 0¢],[0 + 0z 0.4 + 04],
and [0 + 04; 0.8 4 0z] and the Reynolds number is R = 1000.
(c) Real part of u, for the initial vector u(0) = [0+ 0¢; 300+ 0z]
of (a). (d) Real part of u; for the initial vector
u(0) = [0 + 0¢; 0.8 + 0i] of (b).
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FIG. 6. (a) Perturbation amplitude at fixed time t = 0.5
as a function of the Reynolds number R and the initial am-
plitude |[u(0)||; v = 1. (b) Same as in (a), but for y = 0.
The threshold of turbulence transition decreases roughly like
[|u(0)||c ~ 1/R for large R. On the bottom plane the isolines
of ||u(t = 0.5)|| =const are displayed.
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FIG. 8. Same as in Fig. 6(b), but driven by external noise.
The initial vector is ||u(0)|| = 0. Here we used the standard
fourth-order Runge-Kutta algorithm with constant time step
size 5x 1075, After each time step we added to each u compo-
nent a random variable with Gaussian distribution and zero
mean. The standard deviation s of this random variable was
varied to model different noise levels. Its maximum value is
about 5 x 10~* in this figure.



